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ABSTRACT: Reservoirs are operated following specific policies, constrained by hydrological and structural conditions. 
When modeling anthropized water systems with reservoirs, the incorporation of existing operating policies is 
important to improve model capability. However, operating policies are not always available or easy to identify within 
large-scale multi-reservoir systems, where operation derives from large number of variables and constraints rather 
than a clear-cut local objective function. This study applies Artificial Neural Networks (ANNs) with the objective of 
analyzing if local variables (inflow, storage level, and evaporation) of a sub-system part of a large-scale coordinated 
multi-reservoir system are sufficient predictors of the operational behavior (release decisions) in a daily time step. 
The sub-system includes the Luiz Gonzaga and Sobradinho reservoirs. Results pointed to a Nash–Sutcliffe efficiency 
coefficient (NS) of 0.67 to 0.74 and a coefficient of determination (r2) of 0.75, showing that we can predict the sub-
system operational behavior most of the time but with some outflow peaks under predicted. 

Keywords: Reservoir operating policy; Reservoir operation emulation; Anthropized water systems simulation. 

RESUMO: Reservatórios são operados de acordo com políticas específicas, condicionadas por condições hidrológicas 
e estruturais. Em simulações hidrológicas de sistemas hídricos antropizados com reservatórios, a incorporação de 
regras operacionais é fundamental para melhorar a capacidade de modelagem. No entanto, regras de operação nem 
sempre estão disponíveis ou são fáceis de identificar em sistemas multirreservatórios de grande escala, onde a 
operação deriva de um grande número de variáveis e restrições, em vez de uma função objetivo local bem definida. 
Este estudo aplica Redes Neurais Artificiais (RNAs) com o objetivo de analisar se variáveis locais (vazão, 
armazenamento e evaporação) de um subsistema parte de um sistema multirreservatório integrado de grande escala 
são preditores suficientes do seu comportamento operacional (decisões de despacho) em um intervalo de tempo 
diário. O subsistema inclui os reservatórios de Luiz Gonzaga e Sobradinho. Os resultados apontaram para um 
coeficiente de eficiência Nash-Sutcliffe (NS) de 0,67 a 0,74 e um coeficiente de determinação (r2) de 0,75, mostrando 
que podemos prever o comportamento operacional do subsistema na maior parte do tempo, mas com alguns picos de 
vazão não previstos. 

Palavras-chave: Regra de operação de reservatórios; Emulação da operação de reservatórios; Simulação de 
sistemas hídricos antropizados. 

1 INTRODUCTION 
Reservoir operation has several objectives, including narrowing the gap between water 

availability (system conditions) and demand (system objectives). For hydropower reservoirs, the 
operation generally follows two main objectives: (a) ensure the delivery of energy following 
contractual agreements and (b) provide the energy at minimum costs (Wurbs, 1996). Operating rule 
curves are often used as guideline to indicate the optimal reservoir release or storage volumes at any 
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particular time, allowing it to achieve the desired objectives according to the hydrological conditions 
(Loucks & van Beek, 2017). For multi-reservoirs systems, coordinated operating approaches usually 
set reservoirs’ release decisions, substituting single reservoir’s operating rule curves. This is the case 
of the Brazilian hydropower system, where the generation and transmission of energy occurs through 
a national interconnected hydro-thermo-wind system (Organização Nacional de Sistema Elétrico, 
2020). 

When modeling anthropized water systems with reservoirs, the inclusion of existing operating 
policies is important to improve model capability. However, in such large-scale, integrated systems, 
modeling a single reservoir or sub-system presents a challenge given it is driven by a complex 
interaction of variables and dynamic conditions, rather than a clear-cut local objective function. As 
operating rules are not always accessible or easy to incorporate into simulation models (Ehsani et al., 
2016), the modeler should thrive to identify how these variables draw a boundary condition for 
system’s operation. Recent works have successfully brought data-driven artificial intelligence (AI) 
models in the field of reservoir operations to identify predictors and extract operating rules from 
historical data. Among AI models, artificial neural networks (ANN) and support vector machine or 
regression (SVM or SVR) are the two main models used in this field (Zhang et al., 2018). Yang et al. 
(2019) point out that although the Recurrent Neural Network (RNN), a class of ANN, still suffers from 
limitations including longer run times, gradient vanishing, and exploding problems, it is well-suited 
for simulation of reservoir operation with dynamic process and high dependence on the historical 
information. 

Jain et al. (1999) implemented ANNs to map functional relations between inflow, storage, 
demand and release of a reservoir operating policy. In Ehsani et al. (2016), ANNs were applied with 
the objective of developing a general reservoir operation scheme to be used in the simulation of large-
scale hydrological models. Data of twelve dams were used to calibrate and validate an ANN model, 
whose output was the daily release (Rt) and inputs were the inflow up to the past two days (It, It−1, It−2), 
the release in the previous two days (Rt−1, Rt−2) and storage data in the previous day (St−1). The results 
pointed to a Nash–Sutcliffe efficiency coefficient (NS) of 0.86, and a coefficient of determination (r2) of 
0.85, concluding that a limited number of input variables is suitable to extract reservoir operations. 
The trained ANN representing a general reservoir operation was then used to evaluate the 
hydrological impact of dam sizes and their distribution pattern within a drainage basin. 

Recently, Yang et al. (2019) explored the applicability of three RNNs (NARX, LSTM and GA-NARX) 
to learn operating polices from historical operation data and construct a reservoir operation model to 
simulate the reservoir outflow. To build the RNN-based reservoir operation model, the inflows of the 
previous two days ( t 2

inQ − , t 1
inQ − ), current day ( t

inQ ) and the future two days ( t 1
inQ + , t 2

inQ + ), and the initial 
storage ( t 1S − ) were chosen as predictor variables, having the reservoir daily outflow ( t

outQ ) on the 
current day as target variable. The results showed that RNNs simulated the outflow of three reservoirs 
satisfactorily with high NS (greater than 0.65) and low absolute percent bias (less than 10%), with the 
GA-NARX performing the best one among three RNNs. The RNN-based reservoir operation model was 
then combined with a geomorphology-based hydrological model (GBHM) to forecast the inflow and 
build a real-time reservoir operation system. 

Although recent advances in emulating reservoir operation have contributed to improve representation 
of broader operation in simulation models, there is still a gap in understanding if and how reservoir dependent 
variables can be used to derive large-scale and multi-reservoirs’ operation policies. For the Brazilian case, high 
capacity hydropower plants and their reservoirs are integrated in a hydro-thermal-wind power system 
through an extensive transmission network. From the total system 164.9 GW installed capacity, 108.5 GW are 
hydropower, distributed in reservoirs across the country (Organização Nacional de Sistema Elétrico, 2020). 
This extensively integrated power system exploits natural hydrological variability in the country, reducing 
more expensive thermal generation in dry seasons/years by transferring hydropower from regions where 
storage levels are higher. The operation is centralized by an Independent System Operator – ISO, which 
produces multiple time scale (from monthly down to half hour dispatch) operation considering hydrological 
conditions, energy demand, fossil fuel prices, scheduled maintenance, deficit cost, entry of new projects and 
the availability of generation and transmission equipment (Organização Nacional de Sistema Elétrico, 2020). 

In such context, modeling a sub-system requires identification of boundary conditions to represent 
several other decisions and objectives not explicitly modeled. The present paper brings in a contribution to 
this problem by investigating if more easily available local variables (inflow, reservoir level, and evaporation) 
are able to explain a sub-system operational behavior with reasonable accuracy, so it can be represented by 
models with less complexity and cost, also avoiding relying on highly uncertain exogenous variables (e.g., 
fossil fuel prices). We applied feed-forward Artificial Neural Networks (ANNs) to learn from daily historical 
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operation data and model the daily release (outflow). The chosen sub-system includes two large hydropower 
reservoirs connected to the country’s integrated power system, Luiz Gonzaga and Sobradinho, located in the 
São Francisco River Basin, Brazil. The reservoirs are operated under both hydropower generation and local 
urban water supply purposes. The Luiz Gonzaga reservoir has recently received a water transfer project to 
deliver water to semiarid areas of the northeastern region of Brazil. Given the relevance of some key input 
variables in this strategic system are still unknown, its investigation will support the emulation of operating 
rules as boundary conditions, helpful to optimize future water transfers, improve the understanding of 
regional water use trade-offs and minimize conflicts. 

2 STUDY AREA 
The São Francisco River Basin is located in the Northeast region of Brazil (Figure 1A), draining 639,219 

km2 (7.5% of the country) with an average flow of 2,850 m3/s (Comitê da Bacia Hidrográfica do Rio São 
Francisco, 2016). The hydropower generation is a relevant aspect of this basin, which has 9 hydropower 
plants part of the integrated hydro-thermal-wind power system, adding up to total hydropower capacity of 
10,556.2 MW (Organização Nacional de Sistema Elétrico, 2020). Sobradinho (SB) is the largest reservoir of 
the basin with a total storage of 34,116 hm3. Further downstream, another important reservoir, Luiz Gonzaga 
(LG), is operated in coordination, with a total storage of 10,782 hm3 (Figure 1B). 

The São Francisco River Basin has also recently received a large-scale Water Transfer 
Project (PISF) to deliver water to neighboring semiarid areas. The water transfer system is 
divided in two branches, North and East. The Eastern branch draws water from Luiz Gonzaga 
reservoir (São Francisco Basin) and delivers it to the Boqueirão reservoir (Alto Paraíba Basin) 
covering a total distance of 220 km (Agência Nacional de Águas, 2016). As the operation of the 
PISF water transfers project depends on the state of Luiz Gonzaga (LG) reservoir (mainly 
storage and releases), any further analysis of the water transfer demands simulation of Luiz 
Gonzaga operation, which depends on the operation of other reservoirs connected to the 
integrated hydro-thermal-wind power system. 

 
Figure 1. São Francisco River Basin, Luiz Gonzaga and Sobradinho reservoirs location (Agência Nacional de 

Águas, 2020) 
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3 METHODOLOGY 

3.1 Artificial Neural Networks 
Artificial Neural Networks (ANN) are data-driven models capable of distributed and parallel processing, 

composed of interconnected input nodes, processing elements (neurons), and output nodes (Hecht-Nielsen, 
1990). In a feed-forward or multilayer perceptron (MLP) ANN, nodes and neurons are arranged in a 
unidirectional manner: input layer, hidden layers and output layer (Tangri et al., 2008). The input layer has 
only input nodes, whose function is to distribute the input signals via connections to each hidden neuron of 
the next hidden layer. Each connection has a weight (w) adjusted via training, and each neuron has an 
activation function. Neurons process the sum of signals from previous layers and independent terms (also 
known as biases) with the activation function, and each output neuron sends its output signal to the respective 
output node. Figure 2 illustrates a single hidden layer. 

 
Figure 2. ANN general (n - j - m) architecture. 

The neural net used in this study consists of three layers: an input layer, a hidden layer, and an output 
layer. The activation function used in each perceptron is unipolar sigmoid and the input variables were 
linearly scaled to fit the limits [0,1]. We used a training algorithm based on backpropagating the errors 
(Rumelhart et al., 1986) and subsequently adjusting the weights based on the delta rule (Widrow & Hoff, 
1960). The following accelerating methods were applied: updating weights based on the errors of all training 
samples, applying momentum factor and dynamic learning rate (Vogl et al., 1988). 

ANNs with a three-layer structure are universal approximators (Hornik, 1991) but overfitting during 
training can compromise ANN generalization capability to new data. To attempt preventing overfitting, we 
applied a cross-validation approach by partitioning the dataset into three sets: training, validation, and 
verification (Hecht-Nielsen, 1990). The cross-validation approach consists of training the model with the 
training set, checking the errors after each cycle with a separate set (the validation set) and ceasing training 
when this validation set error stops improving. Weight adjustment is only undertaken with the training set 
error. The final model performance is checked with the verification set. An overall flowchart explaining the 
cross-validation method applied in this study is presented in Appendix A. 

Training algorithms based on the descending gradient depend highly on the initial conditions. An 
approach to reach a nearer global solution is to repetitively train the ANN with different initial 
conditions. We thus applied an evolutionary algorithm (EA) to search for the initial synaptic weights 
that yielded the smallest validation set error. Additionally, we investigated the number of hidden 
neurons necessary to present a validation set performance similar to an oversized ANN, preventing 
the development of overly complex models. In Lucchese et al. (2020), a complexity analysis was 
performed based on a set of repetitions to select the network configuration that resulted in the best 
validation performance. Here, the complexity analysis was carried out according to the optimal initial 
weights obtained by the EA result (oriented search). 

The EA approach consisted in, first, running a preliminary inspection to find the smallest validation error 
regardless of the number of hidden neurons. Then, for each complexity configuration analyzed, the next run 
searched for 20 individuals (set of initial weights) that yielded validation errors smaller than the preliminary 
search to compound the first generation. Subsequent generations were created from the 10 fittest individuals 
(smallest validation errors) in the previous generation plus 10 mutations for each one of these individuals 



Deriving reservoir operational... 
Dalcin, A.P., Pedrollo, O.C., Finck, J.S., & Marques, G.F. 

 

Rev. Gest. Água Am. Lat., Porto Alegre, v. 18, e4, 2021 5/17 

until the converged criteria was satisfied. The complexity configuration that improved the performance 
without increasing the complexity was chosen to compose the model. 

3.2 ANN Architecture Proposal and Input data 
The variables (input and output nodes) proposed to build the ANN model were based on the local state 

variables, which are likely to explain the operation of the LG reservoir in a daily time step (Figure 3), and they 
could be used to build boundary conditions to a LG simulation. Given the presence of a significantly larger 
reservoir immediately upstream (Sobradinho – SB), which releases provide most of the inflow to LG, it was 
chosen to provide an extra exogenous variable as predictor to LG operation. Different ANN configurations are 
then proposed, associating the variables selected with the release decisions at LG. The ANN models are then 
run and their performance is evaluated, in order to check on the contribution of each predictor variable to the 
behavior of LG reservoir and produce a LG reservoir operating function. 

The M1 configuration has 4 input variables used as predictors of LG release decisions in the 
current day ( , ,out LG tQ ): the LG reservoir inflow in the current day ( , ,in LG tQ ), the LG evaporation in the 
current day ( ,LG te ), and both SB and LG reservoirs storage levels at the previous day ( , ,;SB t 1 LG t 1L  L− − ). 

 
Figure 3. Model conceptualization. 

We conducted a correlation analysis and determined that SB outflow affects the LG inflow with a lag time 
of 3 days based on a , ,in LG tQ  x , ,out SB tQ  (see correlogram in Figure 4). From this result, the second ANN 
configuration (M2) additionally computed the outflows of the Sobradinho reservoir in the current and four 
previous days ( , , , , , , , , , ,; ; ; ; out SB t out SB t 1 out SB t 2 out SB t 3 out SB t 4Q Q Q Q Q− − − − ) as predictors of the LG release decisions 
( , ,out LG tQ  ). These flows act as future inflows forecast for the LG reservoir operation. In total, 9 input variables 
were used in the M2 configuration: the reservoir inflow in the current day ( , ,in LG tQ ), the evaporation in the 
current day ( ,LG te ), both reservoirs previous time levels ( , ,;SB t 1 LG t 1L  L− − ), and the outflow of the Sobradinho 
reservoir in the current and previous times ( , , , , , , , , , ,; ; ; ; out SB t out SB t 1 out SB t 2 out SB t 3 out SB t 4Q Q Q Q Q− − − − ). 

 
Figure 4. Correlogram between SB outflow (t+Delay) and LG inflow (t) .  

Table 1 summarizes the main parameters used to build the ANN configurations. The index LG 
represents Luiz Gonzaga reservoir, the index SB represents the Sobradinho reservoir, and the index t 
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represents the time-step (daily). We have linearly scaled down patterns and target to (0, 1) and used 
sigmoid unipolar activation function. 

Table 1. ANN parameters 

Parameter Description 

Input variables (M1) , , , , ,; ; ;SB t 1 LG t 1 in LG t LG tL  L  Q  e− −  

Input variables (M2) 
, , , , ,; ; ; ;SB t 1 LG t 1 in LG t LG tL  L  Q e  − −  

, , , , , , , , , ,; ; ; ; out SB t out SB t 1 out SB t 2 out SB t 3 out SB t 4Q Q Q Q Q− − − −  

Output variable , ,out LG tQ  

Architecture 4 – j – 1 (M1) and 9 – j – 1 (M2) 

Number of hidden neurons (j) choosen according to the the complexity analysis 

Activation function sigmoid unipolar; ( ) x
1f x

1 e−
=

+
; [0,1] 

Input data scaling linear (amplitude) 

Data time step daily 

Energy generation objectives are usually dependent on the hydropower plant firm energy, 
demands, energy prices and contractual market agreements. As this information is dynamic in the 
Brazilian energy market and it involves other variables and constraints (e.g., fossil fuel prices, deficit 
cost, availability of generation and transmission equipment, etc.), its representation is beyond the 
scope of this paper, and should be investigated in future developments. 

3.3 Division of Training, Validation and Verification Sets 

The available data period spans from 01/01/1991 to 01/01/2019, resulting in 10,228 valid 
registers (red and blue lines of Figure 5), where a register is an individual input-output pair. Regarding 
the evaporation time series, the closest evaporation monitoring station to the study area (Paulo Afonso 
station) had its missing values filled by other three near monitoring stations (Água Branca, Cabrobó 
and Pão de Açucar). Table 2 summarizes the input variables information. 

Table 2. Input variables information. 

Variable Description Unit Station Id Reference 

SBL  Sobradinho Level m 19121 (Agência Nacional 
de Águas, 2020) 

LGL  Luiz Gonzaga Level m 19122 (Agência Nacional 
de Águas, 2020) 

,in SBQ  Sobradinho Inflow m3/s 19121 (Agência Nacional 
de Águas, 2020) 

,in LGQ  Luiz Gonzaga Inflow m3/s 19122 (Agência Nacional 
de Águas, 2020) 

,out LGQ  Luiz Gonzaga Outflow m3/s 19122 (Agência Nacional 
de Águas, 2020) 

LGe  Luiz Gonzaga Evaporation mm 

82986 - Paulo Afonso 
(Instituto Nacional 

de Meteorologia, 
2020) 

82989 - Água Branca 
82886 - Cabrobó 

82990 - Pão de Açúcar 
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A drought in 2012 resulted in a reservoir operating policy change from 2013 (Silva et al., 2020). 
To select a representative period with both low and high flows, the verification period was set from 
31/07/2000 to 05/06/2007 and from 05/01/2015 to 02/02/2017 (blue line), while the remaining 
period (red line) compounded the training and validation sets (Figure 4). 

Training and validation registers were sampled from the red line period in two steps. First, 
we assigned input-output pairs to the training set that contained at least one maximum or 
minimum value of each input and output variables domain. As the ANNs are not suitable to 
extrapolate the domain of the training set, assigning extreme values to the training set attempts 
to prevent extrapolations of the domain. Secondly, based the systematic sampling technique 
(Cochran, 1977), the remaining pairs were sorted in relation to the output variable and 
alternatingly assigned to each set, leading to the approximate ratio composition of 50% for 
training and 50% for the validation. 

 
Figure 5. Total available data and organization of the training, validation and verification sets. 

3.4 Evaluation metrics 
The performance analysis of each data set was based on the Nash-Sutcliffe coefficient (1), 

coefficient of determination (2), mean error (3), mean absolute error (4), root mean square 
error (5), and maximum error (6). 
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( )2I
i ii 1 O P   

RMSE  
I

= −
= ∑  (5) 

( )i iEmax max O P= −  (6) 

Where the index i represents the register number, iO  is the observed output at i; iP  is the predicted 
output at i; O  is the mean of the observed output; P  is the mean of the predicted output; I is the total 
number of samples. Both NS and r2 coefficients vary from 0 to 1, where values closer to 1 indicate 
better fitting (Krause et al., 2005). 

4 RESULTS 

4.1 Complexity Analysis 
Figure 6 shows that one hidden neuron would produce a final error higher than if the 

complexity of the network was increased. However, a number of hidden neurons higher than 2 
would not improve the performance considerably. We selected 2 neurons to compose the 
hidden layer for both ANN proposals (M1 and M2). 

 
Figure 6. Complexity analysis. 

Figure 7 presents the trained ANN obtained in this study, where the connections represent the synaptic 
weights, whose thickness are associated to the magnitudes relative to other connections impinging to the 
same neuron; and color to the signs of the values. The thicker the connections, the greater the contribution to 
the respective neuron. The red lines indicate positive weights and the blue, negative ones. 

 
Figure 7. Representation of the nodes and neurons connections of the respective trained models. 
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4.2 Performance Analysis 

Figure 8 and Figure 9 present the comparison between observed and predicted outflows for the 
training, validation and verification sets, while Table 3 presents the evaluation metrics for both 
proposals (M1 and M2). 

The ANN model was able to satisfactorily reproduce the main reservoir release behavior for both 
configurations, M1 and M2 (Figure 8a and Figure 9a). Blue and red lines have similar slopes for the training 
and validation sets (Figure 8b and Figure 9b), indicating that everyday occurrences and outflow peaks could 
be learned from the training set and generalized to the verification set. The inflows forecast of the ANN M2 
model improved its overall performance. 

 

Figure 8. Comparison between observed and predicted outflow (ANN configuration M1). 
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Figure 9. Comparison between observed and predicted outflow (ANN configuration M2). 

The verification set result in Figure 8b and Figure 9b shows that the ANN model satisfactorily predicts 
the operation behavior for events near the average for both models (cluster of points near 2000 m3/s). While 
ME coefficient indicates an underestimation for M1 (ME = -109.5 m3/s), the M2 positive mean error 
(ME  =  5.1  m3/s) indicates an overall overestimation. However, for observed LG outflows above 3,000 m3/s, 
M1 resulted in a higher dispersal around the 1:1 line, showing a higher trend for overestimating some peaks, 
while M2 underpredicted some extreme events. One possible explanation is the training prioritizes fitting to 
more frequent events rather than the extreme ones due to most outflows being under 3000 m3/s. 

Intervening factors driving the operation of the whole hydropower integrated system may produce 
isolated disturbances that cannot be explained by the local variables modeled. It can be noticed by some peaks 
that were not predicted, particularly the peak of the 1100th sample of the training sets and the 200th sample 
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peak of the validation sets (Figures 8a and 9a). For the verification set, the M2 model could not predict the 
1300th event, which reflected on the reduction of the performance of the Emax coefficient. It indicates that, 
while the additional input variables (inflows’ forecast) allow better prediction of everyday events (also 
producing an overall better performance), it does not help in reproducing events that cannot not be explained 
by the local input variables (level, inflow and evaporation). 

Table 3. Performance analysis. 

Performance 
Training Validation Verification 

M1 M2 M1 M2 M1 M2 

NS 0.852 0.935 0.850 0.898 0.669 0.745 

r2 0.852 0.935 0.853 0.899 0.751 0.751 

ME (m3/s) -3.2 -0.3 58.084 28.7 -109.5 5.1 

MAE (m3/s) 269.2 189.9 272.5 193.6 281.5 218.4 

RMSE (m3/s) 398.0 269.1 394.4 318.7 478.2 420.1 

Emax (m3/s) 4854.3 4255.9 6103.5 6331.9 2586.8 6286.4 

4.3 Input variables relevance 
The interactions between explanatory variables and the complexity of functions implemented by 

neural networks make analytical studies of each input variable contribution to explain the output a 
challenge (Lek et al., 1996). We proposed a leave-one-out performance reduction analysis as an 
indicative approach of the relevance of the input variable to explain the resulting output (Lek et al., 
1996; Tan & Beklioglu, 2006). The model M1 was retrained leaving one input variable out at each 
simulation. The simulations were performed in triplicate runs to avoid and catch any possible result 
instability. For each run, the resulting sets’ performance was computed and used as indicative of the 
contribution of the missing input variable to explain the observed operation at LG. Table 4 shows the 
resulting r2 and NS performance reduction for the verification sets. All run triplicates presented stable 
results with less than 0.3% of difference. 

Table 4: Performance reduction analysis for each input variable removed. 

Input variable removed r2 Performance 
reduction (%) NS Performance 

reduction (%) 
None 0.751 - 0.669 - 

, ,in LG tQ  0.280 62.7 0.267 60.1 

,LG t 1L −  0.726 3.3 0.600 10.3 

,SB t 1L −  0.735 2.1 0.598 10.6 

,LG te  0.740 1.5 0.640 4.3 

Removal of any input variable caused a performance decrease. The LG inflow ( , ,in LG tQ ) had the 
greatest performance reduction (62.7% for r2 and 60.1% for NS), which indicates it is an influent 
predictor to the LG reservoir operation. The LG level at previous day ( ,LG t 1L − ) and the SB level at 
previous day ( ,SB t 1L − ) presented similar performance reduction, which indicates the SB reservoir may 
constraint the LG operation in some circumstances. As pointed out by the resolution no 2081/2017 
(Agência Nacional de Águas, 2017), a minimum storage must be maintained in LG reservoir when the 
SB reservoir is operating under low (20 to 60% of the active storage) and very low storage conditions 
(less than 20% of the active storage). According to the historical operation, the SB reservoir operation 
in the very low storage conditions corresponds to 15% of the available data, while the low storage 
condition corresponds to 48%. The resulting weights produced by the models incorporate this 
behavior. 

The evaporation ( ),LG te  is the least influent predictor but still important given both reservoirs are 
located in a semi-arid region. When retraining the M1 model without the evaporation input, the 
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performance (r2) has reduced in 4.3% for the verification set. The official modeling tools applied by 
the ISO for dispatching reservoir power production throughout the national integrated system 
consider the evaporation when formulating operational decisions (Eletrobras, 2020), which explains 
the importance of this variable to the final result. 

4.4 Reservoir Operating Function 
We finally combined the resulting connection weights to produce a reservoir operating function. 

Table 5 presents the final values of the scaling parameters and weights for the M1 model, which can 
be used to produce a non-linear function to simulate LG outflow releases. The M1 model was chosen 
due to its simpler representation (not requiring incorporation of forecast models), while still able to 
perform well. 

Table 5. Variable weights for the M1 configuration. 

Layer Variable ( ,in tX ) Scale Weight (W) 
min max j1 j2 

Input 

,SB t 1L −  342.6 432.1 1.0275 -3.4502 

,LG t 1L −  269.4 334.6 9.2536 -22.1410 

,LG te  0 24.5 0.0554 -0.8347 

, ,in LG tQ  255.6 12102 -2.3648 -2.3766 

,in jb  - -3.3019 10.654 

Output 
, ,out LG tQ  366.3 11875 -8.0675 -14.105 

outb  - 5.5659 

The operating function is represented by Equations 7 to 12, having the LG outflow ( outX ) 
represented as a function of the input variables ( , )in tX , and the trained weights (W). 

( )
( ) ( )

, ,
,

, ,max
in t in t

esc in
in t in t

X min X
X

X min X

−
=

−
 (7) 

, , ,( )j esc in in j in j
in

l X *W  b    j= + ∀∑  (8) 

j
j l

1h   j
1 e−

 
= ∀ 

+ 
 (9) 

( ),j j out out
j

r h *W b= +∑  (10) 

r
1s

1 e−
 =  

+ 
 (11) 

( ) ( )( ) ( )max min minout out out outX s* X X X = − +   (12) 

The index “in” represents the input variables , , , , ,( ; ; ;SB t 1 LG t 1 in LG t LG tL  L  Q  e− − ), while the index “out” 
represents the output variable ( , ,tout LGQ ). inX  is the value of the input variables, ,esc inX  is the scaled 
value of the input variables, b represents the independent terms, W is the weight of each input/output 
variable, hj is the signal in the hidden neuron j, s is the signal of the output neuron, and outX  is the value 
of the output variable after scale reverting. 

To apply the results in a simulation model, the example procedure in Figure 10 can be followed. The 
reservoirs’ level initial conditions are the first input, with the outflow at Luiz Gonzaga ( , , )

tout LGQ  calculated 
based on Equations 7 to 12 and Table 4. Given the resulting reservoir level depends on the release decision, 
the level at Luiz Gonzaga at each time t can be calculated based on the mass balance Equation 13 and the 
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reservoir level x storage curve (14) (Câmara de Comercialização de Energia Elétrica, 2020), serving as input 
to the next time-step run. Figure 11 presents the simulation result considering a synthetic inflow and 
evaporation time-series based on the observed years from 2000 to 2019. For Sobradinho, we generated level 
time series simulating low and very low conditions, which restricted the LG operation. 

, ,t t 1 in t t out tS S Q e Q−= + − −  (13) 

( ) ( ) ( ) ( ). . . . . . . .3 8 2 12 3 18 4
t t t t tL 374 1 40 10 S 5 35 10 S 1 16 10 S 9 55 10 S− − − −= + × − × + × − ×  (14) 

 

Figure 10. Simulation approach. 
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Figure 11. Simulation result. 

The simulated outflow average obtained was 1786 m3/s with a standard deviation of 1002 m3/s. 
As comparison to the observed outflow for the same period whose inflow and evaporation input time-
series were originated, the values are close to the observed average and standard deviation 
(1779  m3/s and 970 m3/s). 

5 CONCLUSION 
In this study we investigated the applicability of ANNs to emulate a sub-system reservoir operation part 

of a large-scale hydropower system. We conclude that the ANNs are able to reflect and capture the main 
historical reservoir operation behavior, and the sub-system local variables inflow, level, and evaporation are 
able to explain about 75% of the operating behavior, producing accurate results for most part of the observed 
events, especially when the system is closer to average flow conditions. Although the ANN M2 model 
presented better overall performance, the fewer M1 model variables are able to explain the operational 
behavior with reasonable accuracy and less complexity. 

Some outflow peaks could not be predicted by the ANN models, which suggests that intervening factors 
driving the operation of the whole integrated system may produce isolated disturbances that cannot be 
explained by the local variables. Variables representing energy demand, fuel prices, deficit cost, entry of new 
projects and availability of generation and transmission equipment, which are not easily available as time-
series, could be investigated in future studies regarding the increment in the model complexity and 
performance. 

Despite the limitations, our methods and results are useful to construct a daily-time reservoir operation 
model, which is helpful to simulate the reservoir outflow under different scenarios. It is especially important 
to the study area, where reservoirs for hydropower generation and more recently inter-basin water supply 
purposes have a strategic relevance, so that understanding and identifying water use trade-offs by applying 
simulation models improves the capacity of managing future water use conflicts. 
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APPENDIX A 
The flowchart (Figure 1A) summarizes the ANN modeling procedures of training with cross-validation 

and testing with the verification set. 

 
Figure 1A. Flowchart of the Training, Validation and Verification Processes. 


	artigo científico
	Deriving reservoir operational behavior with artificial neural networks: the case of Luiz Gonzaga dam, Brazil
	Análise do comportamento operacional de reservatórios com redes neurais artificiais: o caso de Luiz Gonzaga, Brasil
	1 Introduction
	2 Study area
	3 Methodology
	3.1 Artificial Neural Networks
	3.2 ANN Architecture Proposal and Input data
	3.3 Division of Training, Validation and Verification Sets
	3.4 Evaluation metrics

	4 Results
	4.1 Complexity Analysis
	4.2 Performance Analysis
	4.3 Input variables relevance
	4.4 Reservoir Operating Function

	5 Conclusion
	References
	Appendix A

